Multi-target state-estimation technique for the particle probability hypothesis density filter

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

State Estimation and Smoothing for the Probability Hypothesis Density Filter

Tracking multiple objects is a challenging problem for an automated system, with applications in many domains. Typically the system must be able to represent the posterior distribution of the state of the targets, using a recursive algorithm that takes information from noisy measurements. However, in many important cases the number of targets is also unknown, and has also to be estimated from d...

متن کامل

Multi-target particle filtering for the probability hypothesis density

When tracking a large number of targets, it is often computationally expensive to represent the full joint distribution over target states. In cases where the targets move independently, each target can instead be tracked with a separate filter. However, this leads to a model-data association problem. Another approach to solve the problem with computational complexity is to track only the first...

متن کامل

Multi-target particle filtering for the probability hypothesis density

When tracking a large number of targets, it is often computationally expensive to represent the full joint distribution over target states. In cases where the targets move independently, each target can instead be tracked with a separate filter. However, this leads to a model-data association problem. Another approach to solve the problem with computational complexity is to track only the first...

متن کامل

Unscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters

The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...

متن کامل

Auxiliary Particle Implementation of the Probability Hypothesis Density Filter

Optimal Bayesian multi-target filtering is, in general, computationally impractical due to the high dimensionality of the multi-target state. Recently Mahler, [9], introduced a filter which propagates the first moment of the multi-target posterior distribution, which he called the Probability Hypothesis Density (PHD) filter. While this reduces the dimensionality of the problem, the PHD filter s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Science China Information Sciences

سال: 2012

ISSN: 1674-733X,1869-1919

DOI: 10.1007/s11432-012-4577-8